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Abstract: Wearable Heart Rate monitors are used in sports to provide physiological insights into
athletes’ well-being and performance. Their unobtrusive nature and ability to provide reliable heart
rate measurements facilitate the estimation of cardiorespiratory fitness of athletes, as quantified by
maximum consumption of oxygen uptake. Previous studies have employed data-driven models
which use heart rate information to estimate the cardiorespiratory fitness of athletes. This signifies the
physiological relevance of heart rate and heart rate variability for the estimation of maximal oxygen
uptake. In this work, the heart rate variability features that were extracted from both exercise and
recovery segments were fed to three different Machine Learning models to estimate maximal oxygen
uptake of 856 athletes performing Graded Exercise Testing. A total of 101 features from exercise and
30 features from recovery segments were given as input to three feature selection methods to avoid
overfitting of the models and to obtain relevant features. This resulted in the increase of model’s
accuracy by 5.7% for exercise and 4.3% for recovery. Further, post-modelling analysis was performed
to remove the deviant points in two cases, initially in both training and testing and then only in
training set, using k-Nearest Neighbour. In the former case, the removal of deviant points led to a
reduction of 19.3% and 18.0% in overall estimation error for exercise and recovery, respectively. In the
latter case, which mimicked the real-world scenario, the average R value of the models was observed
to be 0.72 and 0.70 for exercise and recovery, respectively. From the above experimental approach,
the utility of heart rate variability to estimate maximal oxygen uptake of large population of athletes
was validated. Additionally, the proposed work contributes to the utility of cardiorespiratory fitness
assessment of athletes through wearable heart rate monitors.

Keywords: wearable heart rate monitors; heart rate; heart rate variability; cardiorespiratory fitness;
machine learning

1. Introduction

Physiological and psychological assessment is required to understand the well-being
of athletes and to enhance their competency by improving their health and performance [1].
Wearable Heart Rate (HR) monitors play a major role in tracking their health status and
performance through continuous and real-time physiological assessment [2]. One such
assessment measure is maximal oxygen uptake (VO2max), which is primarily used to
represent the functional capacity, well-being, and performance of the individual during
sports and exercise. VO2max is measured using traditional devices such as metabolic carts
accompanied by gas exchange analysers, along with face mask [3]. The increased load
caused by the above accessories makes it laborious for the athletes to perform the testing
for long durations. To overcome the inherent challenge of the use of the metabolic cart, a
wearable HR monitor [4] can be a suitable solution for VO2max assessment thanks to its
unobtrusive nature and reliable measurement.
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Initially, mathematical formulas were proposed to assess the value of VO2max [5–7].
This was followed by the subjective methods which contained set of questionnaires [8–10],

namely, Physical Activity Rating (PAR), Perceived Functional Ability (PFA) and Profile Of
Mood States (POMS), which were used to assess athletes’ VO2max. In subjective methods,
the validity of VO2max assessment was majorly dependent on athletes’ unstable and incon-
sistent responses to the questionnaire which may vary according to their prior experience.

This subjective nature of questionnaire could introduce bias, therefore making it un-
reliable for VO2max assessment. The objective method consists of both indirect and direct
method for assessing the VO2max of the individual. Indirect method includes field tests that
estimate a person’s VO2max based on their HR, the distance run covered and their time of
trial. The direct method measures an individual’s expired gases to analyze their pulmonary
ventilation, inspired oxygen, and their expired carbon dioxide [11] while performing proto-
cols such as Bruce, Astrand–Rhyming and Graded Exercise Testing (GET) [3,11–13]. The
above protocols are used to assess VO2max directly using mathematical models based on the
linear relationship between HR during exercise and its corresponding oxygen utilization.

HR and VO2max have physiological dependence with each other during exercise. HR is
directly dependent on VO2max, as an increase in VO2max results in an increase in HR, since
the increased oxygen demand of the muscles stimulates an increase in HR to ensure that the
oxygen is delivered to the muscles. Fairbarn et al. [14] conducted an incremental exercise
test to investigate the HR and VO2 response to increasing levels of exercise intensity in
healthy individuals. Their findings demonstrate that there is a strong relationship between
HR and VO2 during incremental exercise, and that HR can be used as an indirect measure
of VO2max in healthy individuals. In a similar way, studies have shown that Heart Rate
Variability (HRV) and VO2max are related in such a way that individuals with higher HRV
tend to have higher VO2max values, suggesting that a well-functioning cardiovascular
system contributes to better physical fitness. Most of the experimental works suggest that
the decrease in HRV can be modeled as a function of exercise intensity, which in turn is
measured by VO2max. Boutcher et al. [15] conducted a study in which association was
observed through the change in cardiac vagal modulation of HR as measured by HRV, with
respect to the variation in VO2max.

In addition to research related to physiological interpretation, experimental studies es-
tablish the association of HR and HRV with VO2max through statistical significance metrics.
Habibi et al. [7] examined the linear association between VO2max and HR and validated
the association through statistical significance. As a result of association observed between
HR and VO2 during maximal and submaximal exercise testing, several direct methods
were employed to predict VO2max from HR. Balderrama et al. [16] used mathematical
models to estimate VO2max from HR using a direct method. Furthermore, the following
studies [17,18] established a stronger association between HR and VO2max, indicating the
fact that HR measurements taken during exercise could be used as predictor variables to
estimate VO2max.

Additionally, HRV has been found to be a predictor of VO2max in some studies with
lower HRV values indicating lower VO2max in individuals. Aggarwala et al. [19] conducted
a study that involved 59 archers, HRV measures, namely, Standard Deviation SDNN and
Percentage of Number of successive NN Intervals that differ by more than 50 ms (PNNI
50) showed a significant impact on the assessment of VO2max. The study [20] developed a
mathematical model that contained HRV variables to determine VO2max. All the above-
mentioned studies, using HRV, investigated its relationship with VO2max on a very small
sample size and for a particular age range. Therefore, there is a need to examine this
association on a large population with a wide age range distribution. Parallelly, association
studies have been conducted with Heart Rate Recovery (HRR) and VO2max. The recovery
period post-exercise is important for restoring the body to its pre-exercise state, promoting
optimal performance and health and reducing the risk of injury and illness. The variation
in recovery levels from light, moderate and strenuous exercise is determined by specific
metabolic and physiological processes such as VO2max, HR, HRV, etc.
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The oxygen uptake of an individual remains elevated during the period of recovery
to help restore the various metabolic processes to their pre-exercise condition [21]. On
this front, the use of HR and HRV parameters during the recovery phase of athletes, to
comprehend the characteristics of oxygen uptake, has only been investigated in a small
number of studies such as [22,23].

Although there are several studies that already put forth the significance of HR
and HRV in VO2max estimation, there prevails an open window to examine the same for
larger population with a wide age range distribution. In doing so, a robust and reliable
Machine Learning (ML) model could be developed and its feasibility could be established
in monitoring the performance of athletes through wearable HR monitors. In light of the
previous studies and in consideration of their findings, this work proposes the utility of
HRV derived from exercise and recovery phase, of a large number of athletes with a wide
age range distribution, to assess VO2max by employing a ML approach.

2. Related Works

In this section, we consider the research works with perspectives to launch various
methodological approach carried out in the form of maximal exercise testing protocol
and data-driven models employed to understand the relationship of HR & HRV with
VO2max. Additionally, to produce relevant features to the data driven models, we provide
descriptions of significant feature selection methods.

2.1. Maximal Exercise Testing

The classical method of estimating VO2max is during the incremental exercise test [3,24–27].
These studies focus on estimating the VO2max during the exercise intervention to inves-
tigate the long-term changes and monitor the performance and fitness of the individual.
The preliminary Cardio Pulmonary Exercise Testing (CPET) was performed using the
mechanical devices such as computerized metabolic cart, motorized treadmill, ergometer
accompanied with breath-by-breath gas exchange analyzers for measurement of VO2max.
The oxygen consumption variables are drawn from the face mask connection that was
sampled with the analyzer. George et al. [28] involved 100 participants (50 females and 50
males) within the age range of 18–65 years to perform maximal exercise testing. Then, a
linear regression model was used with independent variables such as gender, body mass
index, treadmill speed and treadmill grade, which resulted in accuracy given by R2 value
0.88 and Standard Error Estimate (SEE) of 3.18.

2.2. VO2max Estimation Using HR

With improvement in wearable technology, sophisticated algorithms and techniques,
effective and reliable data from the athletes are obtained that help in estimating their
VO2max through standardized protocols, without affecting the functional capability of the
user during the assessment. Neilson et al. [29] chose 105 participants (53 males, 52 females)
and calculated the Pearson correlation coefficient between measured and predicted VO2max.
Multiple linear regression analysis was performed with independent variables such as
gender, body mass, PFA, work rate and steady-state HR and the R2 value obtained was
0.82, with SEE of 3.36. Brabandere et al. [25] conducted a maximal incremental test on a
treadmill which included 31 recreational runners (15 men and 16 women) aged 19–26 years.
Ariza et al. [20] included a total of 20 volunteer subjects (10 men and 10 women) with a
mean age of 19.8 ± 1.77 years in the study. In the above studies, data-driven models were
developed which used both metadata and HR as predictor variables to directly estimate
VO2max. Certainly, HR features used as predictor variables in the models had a larger effect
on accuracy of the VO2max prediction. Although developmental model studies on exercise
interventions have been reported to a greater extent, there are only a handful of studies
that deal with the recovery window. Suminar et al. [23] proposed an improvement of HR
recovery after giving treatment for eight weeks with 24 sessions. The average value of pre
VO2max was 30.73 mL/kg/min with a pulse recovery of 100.7 dt/min.
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After the training phase, the VO2max improved to 32.82 mL/kg/min with a decreased
level of pulse recovery rate to 94.7 dt/min.

2.3. VO2max Estimation Using HRV

Ariza et al. [20] calculated the correlation coefficient between VO2max and each of
the variables, including body composition, age and HRV, using multivariate regression
analysis. The results show that both age and HRV of the participants influenced the final
prediction model of VO2max, with R = 0.423 in men and R = 0.212 in women [30]. The
performance and prediction accuracy of such various regression models were compared
with each other to identify the best ML and statistical methods. The survey results showed
that SVR-based models performed better than other regression methods to predict VO2max.
Aggarwala et al. [19] observed that both time domain HRV measure SDNN and PNNI 50
were positively correlated with VO2max with the coefficient values 0.72 and 0.70, respectively.

A cross sectional study [31] investigated the association of HR, HRV with VO2max
using stepwise multiple regression analysis. The results indicated that HR, RR interval and
PNNI 50 showed significant correlations with VO2max.

2.4. Correlation-Based Feature Selection

Correlation is a combination of a wrapper-based and a filter-based feature selection [32]
method. Initially, the features are ranked based on their Spearman’s correlation coefficient
with the dependent variable. Then, the multi-collinearity among the predictor variables is
eliminated by removing the feature that has low correlation with the dependent variable
and a high correlation with the higher-ranked feature. By performing this process iteratively,
the original set of features is condensed into a smaller bunch with less bivariate collinearity.
Kumari et al. [33] employed correlation-based feature selection to identify people with
alcoholic disorder using recorded brain activity signals. Mitra et al. [34] conducted a
correlation-based feature selection study to investigate and classify different types of
arrhythmia from ECG signals.

2.5. Mutual Information Based Feature Selection

The Mutual Information-based approach [35] employs the principles of filter-based
and wrapper-based feature selection methods, similar to the correlation-based approach.
The difference lies only in the ranking algorithm where instead of ranking the features based
on the correlation coefficient, the features are ranked using their mutual information with
the dependent variable. Mian et al. [36] utilized mutual information-based feature selection
to classify cardiac arrhythmia similar to the correlation-based approach. Sharma et al. [37]
proposed a study that demonstrated the utility of mutual information-based feature selec-
tion to distinguish between fatty and normal liver from ultrasound images.

2.6. Greedy-Based Feature Selection

Greedy forward and backward feature selection is a conventional solution to the
feature selection problem. This method aims to optimize the desired performance metric
at each step of the process. To account for the limitation of forward feature selection and
backward feature elimination, both are performed recursively until there is no improvement
in the selected performance metric. The forward feature selection starts with an empty set,
then the first feature is selected such that when a regression model is trained using this
feature, it gives the minimum value of the chosen metric. For every iteration, the model
performance is optimized such that the combination of new feature and the best features
from the last iteration gives the minimum value of the chosen metric.

This process is followed iteratively until there is no further improvement in the model
performance by the addition of features. Although the set of features obtained through
forward addition is found by optimizing the performance metric at each step, it does not
guarantee to be the best possible combination. Therefore, backward feature elimination
is performed.
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In backward feature elimination, a feature is removed, and the regression model is
trained using the remaining features. The feature whose removal resulted in a better perfor-
mance metric is removed from the feature set. Similar to the forward algorithm, this process
is recursively performed until there is no improvement in the performance metric. The
algorithm finishes when neither the addition of a new feature nor the removal of an existing
feature improves the model performance. A single iteration process of greedy forward and
backward is represented in the Figure 1. Rodrigues et al. [38] has proposed a automatic
segmentation and labeling approach of multimodal biosignal using Self-Similarity Matrix
computed with the signals’ feature-based representation. Hui Liu et al. [39], in his work,
used features derived from biosignals for Human Activity Recognition using greedy feature
selection. Hatamikia et al. [40] used a greedy forward feature selection approach to build
emotion recognition system using EEG signals. Mar et al. [41] applied a sequential forward
selection approach to assess the quality of ECG in arrhythmia classification. This study [42]
implemented greedy forward approach as a feature selector to discriminate 20 different
atrial flutter mechanisms using ECG signals.

Figure 1. Diagrammatic representation of Greedy-based feature selection. Each sub-figure shows the
process of: (a) Sequential forward feature selection. (b) Sequential backward feature elimination.

Through extensive literature study, we observe that data-driven models trained using
HR and HRV are reliable for VO2max estimation. Additionally, we infer that the above-
mentioned feature selection methods, chosen for this study, have their widespread utility
in the biosignal domain for improving the performance of data-driven models.

3. Dataset

In this section, we provide details of the data, collected during the incremental protocol,
which are used in this study to estimate VO2max. Further, we describe the preprocessing
steps used to clean the data followed by extraction of features which is given as input to
the model.

3.1. Dataset Description

The database contained cardiorespiratory measurements obtained from 856 profes-
sional athletes of age range (10–63 years old), at Exercise Physiology and Human Perfor-
mance Lab of the University of Malaga [22,43,44]. The data were collected during GET
protocol, a type of exercise test that involves increasing the intensity of the exercise in a
controlled manner, usually in incremental step or ramp, to assess the individual’s cardiovas-
cular and respiratory responses to exercise. The athletes performed the test on a PowerJog
J series treadmill and the data were collected using CPX MedGraphics gas analyzer system
and 12 lead ECG Mortara system.
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The gas analyzer measured breath-by-breath respiratory parameters mainly VO2max
and a 12-lead ECG Mortara system recorded breath-by-breath HR. The metadata file used
for the analysis contained participants’ details limited to age, height and weight.

3.2. Data Pre-Processing

Breath-by-Breath HR recorded by the ECG monitor (ECG Mortara) during the test was
subjected to pre-processing steps, namely, artifact correction and ectopic beats removal. HR
corresponding to RR intervals that were exclusive to range 300–2000 ms was considered
as outliers and the ectopic beats were determined using the Karlsson method [45]. Both
outliers and ectopic beats identified in the previous step were replaced by values using
linear interpolation. Pre-processed HR segments corresponding to exercise and recovery
were extracted. Then, HRV features were computed on those segments using time domain,
frequency domain and non-linear analysis. Since the monitor was switched off after 3 min of
exercising, the HR segments corresponding to recovery phase were inadequate to compute
frequency domain HRV as per recommendations [46]. Therefore, HRV during recovery
phase was extracted using time and non-linear domain analysis.

In addition, three criteria were taken into account in order to remove unreliable HR
segments from both exercise and recovery data. They were as follows:

1. HR and VO2max trends were eliminated if they were out of phase;
2. Consecutive HR that differed by more than 30 bpm between were removed;
3. Data segments which had less than 5 min of HR and VO2max values were excluded;
4. The participant data which had missing HR and VO2max values were removed.

On applying the above criteria, 75 exercise data segments and 20 recovery data seg-
ments were removed.

HRV measures obtained from time domain were Root Mean Square of the Differences
between Successive RR intervals (RMSSD), Percentage of Number of successive RR Intervals
that differ by more than 20 ms (PNNI 20), PNNI 50, Number of successive RR Intervals
that differ by more than 20 ms (NNI 20), Number of successive RR Intervals that differ
by more than 50 ms (NNI 50) and difference between maximum NNI and minimum NNI
(Range NNI) [46]. The primary HRV features from frequency domain analysis [46] were,
namely, total power density spectral was obtained with power parameters in Very Low
Frequency (VLF) of range 0–0.04 Hz, low frequency (LF) ranging between 0.04–0.15 Hz
and high frequency (HF) from 0.15 to 0.4 Hz. For non-linear domain analysis [46], Poincare
plot was used to establish short range (SD1) and long-range (SD2) variations in the HR
values. Detrended Fluctuation Analysis (DFA) was used as one of the HRV features, due to
its potential power to correlate between successive RR intervals over different time scales
as expressed by α1 (4–16 beats) and α2 (16–64 beats). Hence, HRV features extracted were
further used to estimate VO2max.

3.3. Feature Extraction

From exercise HR segments, time domain HRV features, namely, ‘NNI 20’, ‘NNI 50’,
‘Range NNI’ along with slope of those features were given as set of input features to the
models. Additionally, the frequency domain HRV features ‘VLF’, ‘LF’, ‘HF’ and also slope
of the same were also included. Further non-linear domain HRV features, namely, DFA
estimates (α1), Poincare plot estimates (‘SD1’ and ‘SD2’) and slope of the same were added
to the list. The slope of HRV features were computed to comprehend the characteristic
change in HRV over time. Then, time-based features, namely, ‘SlopeSp25’ (slope of HR
and time segments corresponding to 0–25% maximum speed), ‘RT25’ (correlation between
speed and HR segments corresponding to 0–25% total time), ’RSp25’ (correlation between
speed and HR segments corresponding to 0–25% maximum speed), ‘TimeSp25’ (time at
which they reached 25% of max speed), ‘TimeHR25’ (time at which their HR was 25%
max HR), ‘DurationHR60’ (total time spent in zone 50–60% of max HR) and similar such
features were also included. This yielded 101 features associated with exercise data.
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The detailed description of each feature derived from HR during exercise is listed in
Appendix A. In case of recovery, along with metadata, time domain HRV, slope of time
domain HRV, non-linear domain HRV, slope of non-linear domain HRV measures were
computed, which yielded 30 features. The distribution of the derived features were tested
for normality using Shapiro–Wilk test and observed to be not normally distributed. The
derived features from both exercise and recovery HR segments were fed to the model for
VO2max estimation.

4. Methodology

In order to estimate VO2max using derived HRV features, three machine learning
models, namely, Multiple Linear Regression (MLR), Random Forest Regression (RF) and
Support Vector Regression (SVR), were chosen in this study. A brief mathematical overview
of the working principle of each model and their evaluation approach represented by
different metrics are described in this section.

4.1. Multiple Linear Regression

MLR is a statistical method used to model a linear relationship between the dependent
variable and multiple independent variables. This method aims to fit the linear predictor
function as described in Equation (1).

y = b0 +
n

∑
i=1

bi ∗ xi (1)

where y is the dependent variable, n is the number of predictor variables, xi is the ith
independent features, also known as a predictor variable, b0 is the intercept term and bi is
the regression coefficient of the corresponding predictor variable.

The intercept term and the regression coefficients are determined by choosing an
appropriate loss function and minimizing it using the gradient descent algorithm. Conven-
tional loss functions are Mean Squared Error (MSE) and Mean Absolute Error (MAE). For
this study, the loss function was chosen as MSE because of its convexity and differentiability.

MSE =
1
k

k

∑
i=1

(yi − ŷi)
2 (2)

where k is total data points in the training set, yi is the ith data point of the dependent
variable and, ŷi is the corresponding prediction.

4.2. Random Forest Regression

The decision tree, an integral component of RF, is a non-parametric supervised learning
algorithm that creates a tree-like structure to segregate the training data points. The tree
comprises a root node, internal nodes, branches and leaves. To find the root node, the
dataset is split into two halves and the Sum of Squared Residual (SSR), as described in
Equation (3) is calculated with respect to the aggregates of each branch. Then, the threshold
of the root node is decided such that after splitting the training data into two branches, it
minimizes the SSR.

SSR =
N1

∑
i=1

(yi − y1)
2 +

N2

∑
j=1

(yj − y2)
2 (3)

where yi and yj are the data points in the left and right branches, N1 and N2 are the number
of data points in the left and right branches, and y1 and y2 are the aggregates of target
variables of the left and right branches, respectively.

Similarly, the threshold of internal node is decided such that only the maximum
allowable number of data points remains in each node, known as leaf nodes. Even though
decision trees have low bias, it tends to overfit because of high variance.
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This issue is somewhat rectified by using RF, an ensemble learning algorithm that uses
a multitude of decision trees and aggregates their output to give the final prediction. The
method that RF employs is called bootstrapping, where it creates multiple decision trees
with a subset of features and training set, which slightly increases the bias in the model but
improves the performance greatly.

RF regressor has three main hyperparameters which are ‘max. depth’, which signifies
the maximum depth of the decision trees, ‘n estimators’, which determines the number of
trees in the model, and ‘min. samples split’, which determines the minimum number of
samples required to split the internal node.

4.3. Support Vector Regression

SVR is a supervised machine learning algorithm that employs the principle of support
vector machine to perform a regression analysis. The objective of this approach is to
predict the hyperplane and ε-insensitive margins for the said hyperplane. The ε is a
hyperparameter that defines the width of the tube around the estimated function, such
that the optimization function does not penalize the data points lying inside the tube.
Another important aspect of SVR is that it emphasizes the flatness of the estimated function
by minimizing the L2-norm of the coefficient vector. Conventionally, SVR is modeled to
estimate a linear function, but the dataset may not adhere to this constraint. Hence, the
kernel function is used to project the data into the higher dimensional space and account
for the non-linearity. In this study, the Gaussian Radial Basis Function (Gaussian-RBF) was
chosen as the kernel because of its improved performance on the dataset. The predictor
function, f (x) that needs to be estimated is described in Equation (4).

f (x) =
N

∑
i=1

(ai − a∗i )G(xi, x) + b (4)

G(xi, x) = e−γ||xi−x||2 (5)

where x is the input vector, b is the intercept, G is the kernel function, N is the total number of
data points, xi is the ith feature vector whose corresponding observed dependent variable is
yi, and ai and a∗i are the non-negative multipliers used to construct the Lagrangian function
from the primal to the dual function.

To solve for the unknowns of the given equation a loss function, L(α) described in
Equation (6), needs to be minimized considering the constraints. Due to the possibility
that there exists no such solution as a slack term, C is added to the convex optimization
constraint, which is described in Equation (7).

L(α) =
1
2

N

∑
i=1

N

∑
j=1

(αi − α∗i )(αj − α∗j )G(xi, xj) + ε
N

∑
i=1

(αi + α∗i )−
N

∑
i=1

yi(αi − α∗i ) (6)

N

∑
i=1

(αi − α∗i ) = 0

i : 0 ≤ αi ≤ C

i : 0 ≤ α∗i ≤ C

(7)

As described above, ε, γ and C are the hyperparameters that need to be tuned to
give an optimal performance which is achieved by an exhaustive search of the parameter
space. In this study, this was done using the grid search algorithm along with 5-fold
cross-validation.
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4.4. k-Nearest Neighbor

Outliers are those observations in a dataset that differ significantly from other data
points. These outliers can arise because of factors such as erroneous measurements, abnor-
mal physiology and inconsistent data entry.

The existence of these outliers in data skews the data distribution and compromises
the generalizability of the prediction models. Therefore, to address this issue, the outliers
that defied the internal structure of the data were detected and removed using the k-Nearest
Neighbor (k-NN) algorithm proposed by Sridhar et al. [47]

The k-NN algorithm is a non-parametric supervised learning algorithm that has
several use cases, including but not limited to outlier detection. The underlying assumption
of this method is that, in the multidimensional feature space, similar observations exist in
proximity. The proximity is defined based on the distance between each data point and its
k nearest neighbors. This local neighborhood is found based on various distance measures,
such as Euclidean distance, Manhattan distance or Cosine similarity. Considering the low
dimensionality of the feature space, Euclidean distance measure is preferred, also known
as the L2 norm of resultant vector, as described in Equation (8).

d = (xa − xb)
T(xa − xb) (8)

where d is the Euclidean distance between vectors, xa and xb in the feature space.
To differentiate between outliers and non-outliers, the aggregate distance of each point

with its k nearest neighbors is found and based on a predefined threshold, the distinction
is drawn.

4.5. Evaluation Metrics

The conventional metrics used to evaluate the performance of predictive regression
models are Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Error Percentage (MAPE) and Pearson correlation coefficient (R). Out of these, the preferred
error metric for the study is RMSE due to its ability to account for the large errors that are
highly undesirable [48–50]. To provide an linear estimate about the prediction accuracy of
VO2max values, R metric is preferred in this study [51–53].

5. Experimental Approach

This section describes the process of the feature selection methods that is incorporated
with the above ML-based approaches to avoid overfitting of the regression models. Addi-
tionally, the performance of these models could be improved by providing relevant features.
Since there were 101 features for exercise and 30 features for recovery, the feature selec-
tion was used to minimize the redundancy of the features, and maximize their relevancy.
Therefore, correlation-based feature selection, mutual-information-based feature selection,
and a combination of greedy forward and backward feature selection were employed in
this study.

5.1. Correlation

As mentioned in Section 2.4, correlation-based feature selection allocates the impor-
tance to the features based on their absolute value of Spearman’s correlation coefficient with
VO2max. Since the majority of feature data points were not normally distributed and con-
tained outliers, Spearman’s rank correlation was used to measure the correlation between
the features. With respect to exercise, all the 101 independent features were ranked from
highest to lowest based on their correlation coefficient. Any feature whose absolute value
of correlation with other feature was greater than 0.7 was categorized as highly correlated.
The methodology utilized to derive the threshold was based on the empirical observation
that the degree of bivariate collinearity within the 90% subset of feature combinations
was below 0.7, which is a commonly accepted threshold for assessing multicollinearity in
statistical analyses. To avoid the effect of multicollinearity, the features which had lower
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correlation with VO2max and high correlation with higher-ranked features were pruned. As
a result of pruning, the original set of 101 features was reduced to 42 features. Similarly, the
above process was performed on 30 such features which was extracted from the recovery
window. This resulted in a pruned set of 14 features.

For the purpose of representation, correlation-based feature selection was performed
on 20 features, extracted from exercise segments, which had the highest correlation with
VO2max. It was noted that the features, namely, ‘Max. speed’, ‘TimeSp25’, ‘TimeSp50’,
‘TimeSp75’ and ‘TimeSp100’ had high correlation with ‘Ex. Duration’ and hence were
removed during the pruning phase. Similarly ’Total Power’ was also removed due to its
high correlation with ‘VLF’, as shown in Figure 2a. It was observed that the overall bivariate
collinearity among the pruned features, as represented in Figure 2b, was relatively lower
when compared with the original ranked features. The order in which the listed pruned
features, associated with exercise segments, mentioned in Table A1 of the Appendix A are
based on category and not in ranked order.

Figure 2. Heat maps depicting bivariate collinearity among predictor variables. Each of the subfigures
shows the Spearman’s correlation coefficient between: (a) the top 16 ranked features associated with
exercise data; (b) the top 10 pruned features associated with exercise data.

Similarly, the above feature selection was performed on 20 features derived from
recovery data that had highest correlation with VO2max. As shown in Figure 3a, ‘CVNNI’
and ‘SDNN’ were pruned due to their higher correlation with ‘Weight’, which in turn was
removed due to its high correlation with the higher-ranked feature, ‘BMI’. ‘CVNNI’ showed
high correlation with ‘Std. HR’ and hence was removed during the pruning phase. The
above process was performed iteratively which resulted in 14 pruned features, as shown in
Table 1.

Figure 3. Heat maps depicting bivariate collinearity among predictor variables. Each of the subfigures
shows the Spearman’s correlation coefficient between: (a) the top 20 ranked features associated with
recovery data; (b) the pruned features associated with recovery data.
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Table 1. Pruned features based on Correlation during Recovery.

Category Pruned Features Description

METADATA

Age

Physical Attributes
Height

BMI

Gender

Protocol Type Information on whether protocol is “step” or “incremental”

HR -HRV
FEATURES

Std. HR Standard Deviation of HR

Min HR Lowest Heart Rate value

NNI 50 Number of successive NNI intervals that differ by more than 50 ms

PNNI 20 Percentage of successive NNI intervals that differ by more than 20 ms

Ins DFA Slope 120 Average of Instantaneous Slope of DFA values between 0–120 s

Ins DFA Slope 180 Average of Instantaneous Slope of DFA values between 0–180 s

DFA Slope 120 Slope of DFA values between 0–120 s
where DFA describes long term fluctuations in NNI series

DFA Slope 180 Slope of DFA values between 0–180 s

TIME
BASED

FEATURES
Ex. Duration Effective Time spent on Treadmill in seconds

Finally, it was observed that the bivariate collinearity among the pruned features
associated with recovery, as shown in Figure 3b, was relatively lower when compared with
the original ranked features. The pruned features in Table 1 are listed based on category
and not in ranked order.

5.2. Mutual Information

This approach ranked 101 features extracted from exercise segments based on their
mutual information with VO2max. The ranked features were subjected to pruning process
similar to the one performed during correlation-based feature selection.

As a result of pruning, the original set of ranked features was condensed to 41 features.
Similarly, the above process was performed on 30 such features, which were extracted from
recovery window.

For the purpose of representation, Mutual Information-based feature selection was per-
formed on the top 10 ranked features, extracted from exercise segments as shown in Figure 4a.
It was noted that the features ‘TimeSp50’, ‘TimeSp75’, ‘TimeSp100’ and ‘Ex. Duration’ had
high correlation with ’Max. Speed’ and hence were considered as undesirable features
during the pruning phase, as shown in Figure 4b.

Figure 4. Plots depicting ranking and pruning performed based on mutual information. Each sub plot
shows: (a) Mutual information between VO2max and top 10 ranked features associated with exercise
data. (b) Undesirable features removed based on Spearman’s correlation coefficient of exercise data.
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Similarly, ‘CVNNI slope’ was also considered undesirable due to its high correlation
with ‘Std. HR’. Eventually, the top 10 features were condensed to four features after the
pruning process. The order in which the listed pruned features, associated with exercise
segments, are mentioned in Table A2 of Appendix A is based upon category and not in
ranked order.

Similarly, Mutual Information-based feature selection was performed and the top
10 features, as in Figure 5a, derived from recovery segments, were ranked from highest
to lowest. After ordering the features based on Mutual Information, the ranked features
were subjected to pruning. The second-highest-ranked feature ‘Ex. Duration’ was removed
because of its higher correlation with first ordered feature ‘Max. Speed’. Additionally,
lower-ranked features ‘SDNN’, ‘CVNNI’ and ‘Weight’ showed high correlation with their
higher-order-ranked features and hence were considered as Undesired Features, as shown
in Figure 5b.

The above process was performed iteratively on the original set of ranked features
which resulted in 13 pruned features, as shown in Table 2. The pruned features in Table 2
are listed based on category and not in ranked order.

Figure 5. Plots depicting ranking and pruning performed based on mutual information. Each sub
plot shows: (a) Mutual information between VO2max and top 10 ranked features associated with
recovery data. (b) Undesirable features removed based on Spearman’s correlation coefficient of
recovery data.

Table 2. Pruned features based on Mutual Information during Recovery.

Category Pruned Features Description

METADATA

Age

Physical AttributesBMI

Gender

Protocol Type Information on whether protocol is “step” or “incremental”

HR - HRV
FEATURES

Std. HR Standard Deviation of HR values

Min HR Lowest Heart Rate value

SDSD Standard Deviation of Successive Difference of NNI intervals

NNI 20 Number of successive NNI intervals that differ by more than 20 ms

NNI 50 Number of successive NNI intervals that differ by more than 50 ms

Ins DFA Slope 180 Average of Instantaneous Slope of DFA values between 0–180 s
where DFA describes long term fluctuation in NNI series

DFA Slope 60 Slope of DFA values between 0–60 s

DFA Slope 180 Slope of DFA values between 0–180 s

TIME
BASED

FEATURES
Max. Speed Maximum speed reached
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5.3. Greedy Forward–Backward Method

The greedy-based sequential feature selection was performed as described in Section 2.6.
With respect to the 101 features corresponding to the exercise data and SVR model, the
forward and backward algorithm was used iteratively to find the best set of features. It
was found that the forward feature selection process yielded 30 features primarily ‘Ex.
Duration’, ‘Protocol Type’, ‘BMI’, ‘Gender’, ‘TimeSp50’ etc. Whereas, during the backward
elimination of features, three features were removed, namely, ‘PNNI 20’, ‘LF’, and ‘Total
Power slope’. The final set of features was as listed in Table A3 of the Appendix A.

When greedy feature selection was performed by evaluating the error metric of the
MLR model, it was observed that the forward feature selection set contained 36 features.
Out of these, the backward elimination algorithm removed 4 features, ‘HF’, ‘Max. Speed’,
‘Total Power’, ‘HR MAX 25’, to improve the model performance. This resulted in the final
32 optimal features for VO2max prediction, as shown in Table A3 of the Appendix A. While
using the RF model for the above-mentioned features selection method, it was observed
that in total, there were 18 features selected by the forward algorithm such as ‘Ex. Duration’,
‘R TIME 75’, ‘TimeSp25’, ‘Age’, ‘Max. Speed’, ‘BMI’, from which three were removed, which
are ‘Ex. Duration’, ‘R TIME 75’ and ‘CVI’, by the backward process resulting in the final set
of features as shown in Table A3 of the Appendix A.

Similarly, to the exercise data, the 30 features corresponding to the recovery data,
and SVR model, the forward and backward algorithm was performed iteratively to find
the best set of features. It was found that the forward feature selection process yielded
10 features which are ‘Ex. Duration’, ‘BMI’, ‘Gender’, ‘Protocol Type’, ‘Max. Speed’, ‘Age’,
‘Median NNI’, ‘Height’, ‘Weight’, ‘PNNI 50’. Whereas, during the backward elimination
of features, no features were removed. The final set of features were as listed in Table 3.
By performing a similar process using the MLR model, the forward algorithm selected
10 features, namely, ‘Ex. Duration’, ‘BMI’, ‘Gender’, ‘Protocol Type’, ‘Max. Speed’, ‘Age’,
‘Median NNI’, ‘Height’, ‘Weight’, ‘PNNI 50’. Whereas, the removal of none of the features
resulted in improved performance. Hence, the final set of features was the same as that
was given by the forward algorithm as shown in Table 3.

Table 3. Best features based on Greedy feature selection during Recovery.

Category Greedy Feature Selection

MLR

Age, Gender, Height, Weight,
BMI, Protocol type, Median
NNI, PNNI 50, Max. Speed,
Ex. Duration

RF

Age, Gender, Weight, Height, BMI,
Protocol type, Max. HR, Std.
HR, Range NNI, SDSD, NNI
20, PNNI 20, DFA Slope 60,
Ins DFA Slope 180, CVNNI,
Ex. Duration, Max. Speed

SVR

Age, Gender, Weight, BMI,
Protocol type, Range NNI,
NNI 20, Ex. Duration,
Max. Speed

When this features selection method was applied to the RF model, its testing error
stopped improving after the addition of 17 features.

The features were ‘Ex. Duration’, ‘Weight’, ‘Age’, ‘Gender’, ‘Std. HR’, ‘Protocol Type’,
‘Max. Speed’ and ‘DFA Slope 60’. Even here, the termination condition was met without
any feature removal. A complete list of selected features is shown in Table 3.
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6. Results

The dataset was cleaned by removing the subjects with unreliable heart rate segments
which accounts for 75 instances in exercise data and 20 in recovery data. These data
were further divided into training and testing sets by following the norms of 10-fold
cross-validation.

The dataset was randomly split into ten partitions, out of which nine were selected for
training and one for testing. In a single fold during the cross-validation process, the subjects
were split into two mutually exclusive sets with 90% of the subjects used for training and
10% for testing which followed the Person Independence (PI) based training. A PI-based
training was employed to ensure that the subjects that were a part of training process were
not included in the testing. The advantage of 10-fold cross-validation is that there are ten
such combinations of training and testing sets whose aggregate metrics take the stochastic
nature of the random split into account. The mechanism of train–test split is described
in the Appendix A and the corresponding RMSE across the 10 folds of cross-validation
observed for an instance is tabulated in Table A4.

Thereafter, the regression models were trained using the training set and their per-
formance was measured on the testing set. All the hyperparameters of RF (‘max. depth’,
‘n estimators’ and ‘min. samples split’) and SVR (C, ε and γ) were tuned using the Grid-
Search algorithm in conjunction with a 5-fold cross-validation. This process was performed
for each variation of the RF and SVR-based model separately and subsequent results
were noted.

The base features, namely, ‘Max. Speed’, ‘Ex. Duration’, ‘Max. HR’ and metadata
were used to train MLR, RF and SVR models as described in Section 4 and the results were
obtained as mentioned in Table 4.

Table 4. Performance Metrics of models with Base Features.

Model
Description

Features—Max Speed,
Exercise Duration

Max. HR and Metadata

R RMSE

MLR 0.69 5.43

RF 0.67 5.58

SVR 0.70 5.34

Akay et al. [54]
(SVR)

0.71 5.48

A similar study was performed using SVR by Akay et al. [54] and R reported by that
study was 0.71, which was in accordance with our observation of 0.70, with similar features
and model. Whereas, the RMSE of the above mentioned study was 5.48 which was slightly
higher than the 5.34 value reported by this study, as shown in Table 4. To improve the
performance of the above-mentioned models, several HRV features were evaluated. This
resulted in 101 features for the exercise data and 30 features for the recovery data, which
were used to train the previously mentioned models and the results were noted as specified
in Table 5.
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Table 5. Performance Metrics of models with all the features.

Model
Description

During
Exercise

During
Recovery

R RMSE R RMSE

MLR 0.67 5.71 0.68 5.57

RF 0.67 5.58 0.69 5.40

SVR 0.71 5.28 0.71 5.26

For the exercise data as well as recovery data, R and RMSE did not show any significant
change with respect to SVR but there was slight decrement in the performance metric of
MLR and RF which can be seen from the Table 5. This decrease in performance was caused
by the overfitting of the model due to the presence of large number of features. Therefore,
to address this concern, several feature selection methods such as correlation-based, mutual
information-based and greedy forward-backward feature selections were used.

6.1. VO2max Estimation during Exercise

As it is evident from Table 6, the greedy feature selection method gave the highest
R values and lowest RMSE with respect to all regression models. Additionally, it can
be seen that the performance of MLR was very close to the performance of SVR with
greedy feature selection; on the other hand, RF gave the least desirable results. The best
values of R and RMSE were 0.74 and 4.99, respectively, which was observed using MLR in
conjunction with greedy feature selection. Compared to the no-feature-selection approach,
there was an improvement of 5.7% and 7.2% in the R value with greedy-based SVR and
MLR, respectively. There was a reduction of 5.6% and 8.1% in the RMSE of greedy-based
SVR and MLR, respectively.

Table 6. Performance Metrics of Models for Exercise Data.

Feature Selection
Method

MLR RF SVR

R RMSE R RMSE R RMSE

Correlation 0.69 5.40 0.67 5.61 0.71 5.31

Mutual Information 0.71 5.31 0.69 5.44 0.72 5.23

Greedy 0.74 4.99 0.71 5.26 0.74 5.04

It can be clearly inferred from Table 6 that the correlation-based feature selection
method gave the least desirable performance followed by the mutual information-based
approach, and the greedy-based method provided the overall best results. When the
correlation-based feature selection method was employed, SVR performed best when given
with first 44 pruned features followed by MLR with first 41 pruned features and RF gave
the highest RMSE consistently but only took 39 pruned features to give its best result. From
the Figure 6a, we can see that SVR performed consistently better than the other two models,
whereas, among MLR and RF, MLR had significantly lower error than RF.
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Figure 6. Error plot depicting the performance of regression models (MLR, RF, SVR) trained using
a combination of pruned features associated with exercise data. The y–axis of each subplot shows
prediction error using: (a) correlation–based feature selection method. (b) mutual information–based
feature selection method. Each entry in the x–axis is represented in the form [1–N], which corresponds
to the combination of 1st to Nth feature set that is provided to regression models.

While selecting the features using the mutual information-based method, it was
observed that the SVR had the overall lowest RMSE followed by MLR and RF, as shown in
Figure 6b. It can also be observed that the number of pruned features for which the models
gave their best performance lied in close proximity. For SVR, it was first 39 pruned features,
MLR had first 37 pruned features and RF had first 38 pruned features.

6.2. VO2max Estimation during Recovery

In contrast to the exercise data, the number of subjects with unreliable HR segments
was far smaller. In total, 17 such subjects were removed, which accounts for only 1.71% of
the subjects taken in this study. Similar to the exercise data, feature selection and model
training were performed and the evaluation metric was noted as shown in Table 7.

Table 7. Performance Metrics of Models for Recovery Data.

Feature Selection
Method

MLR RF SVR

R RMSE R RMSE R RMSE

Correlation 0.69 5.43 0.69 5.39 0.71 5.28

Mutual Information 0.69 5.42 0.71 5.29 0.71 5.30

Greedy 0.71 5.29 0.71 5.28 0.73 5.15
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As it is evident from Table 7, the greedy feature selection method gave the highest R
values and lowest RMSE with respect to all but one regression models, i.e., RF. Additionally,
it can be seen that the performance of MLR was very close to the performance of RF with
respect to the greedy and correlation-based feature selection method.

The overall best values of R and RMSE values were 0.73 and 5.15, respectively, which
was observed using SVR in conjunction with greedy feature selection. Compared to the
no-feature-selection approach, there was an improvement of 2.8% and 2.1% in R and
RMSE value, respectively, with greedy-based SVR. It can be inferred from the Table 7
that the performance of correlation and mutual information-based MLR and SVR were
undiscernable as in the case of mutual information and greedy-based RF.

When the correlation-based feature selection method was employed, SVR performed
best when given with the first eight pruned features followed by RF with the first seven
pruned features and MLR gave the highest RMSE with the first seven pruned features. As
it is evident from Figure 7, SVR performed consistently better than the other two models,
whereas, among MLR and RF, MLR had lower error than RF with respect to pruning
process. While selecting the features using the mutual information-based method, it was
observed that the SVR had the overall lowest RMSE followed by RF and MLR, as shown
in Figure 7b. It can also be observed that the number of pruned features for which the
models gave their best performance was exactly the same. These best features contained
the complete pruned feature set of 13 features.

Figure 7. Error plot depicting the performance of regression models (MLR, RF, SVR) trained using
a combination of pruned features associated with recovery data. The y–axis of each subplot shows
prediction error using: (a) correlation–based feature selection method. (b) mutual information–based
feature selection method. Each entry in the x–axis is represented in the form [1–N], which corresponds
to the combination of 1st to Nth feature set that is provided to regression models.

7. Post-Modeling Analysis

In this section, the post-modeling analysis was performed to gauge the effect of deviant
points on the model performance. The deviant points were those that deviated too far
from the primary cluster of data in the feature space formed by the measured VO2max and
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Max. Speed. Based on the previous feature selection approach, it was observed that Max.
Speed was not only a highly ranked feature, but was also consistently present in the final
feature sets of most of the models. Its Spearman’s correlation coefficient with the measured
VO2max was also significantly high, which indicated a monotonic relationship between the
two. Therefore, the two-dimensional feature space was constructed using Max. Speed and
measured VO2max and the k-NN-based method was applied to detect the deviant points.
The deviant points, due to their divergent behavior, would compromise the generalizability
of the model. The deviant points were scattered away from the main cluster formed by
the reliable counterparts. Neither a discernible pattern was observed among the deviant
points nor the deviant points that constituted the isolated cluster occurred in large numbers.
Hence, the presence of deviant points could hamper the training process by deviating the
model from learning the optimal parameters, thereby affecting the prediction outcomes of
reliable measurements.

7.1. Case I

The model results, without addressing these deviant points, would not reflect the
scenario when the models are exposed to a dataset with reliable measurements. Hence,
the model performance was re-evaluated by removing these observations from the whole
dataset, redoing the training, carrying out the features selection process and testing the
model based on the methods as described in the previous sections. By using the k-NN-
based method to remove deviant points, in total, 89 data points were detected as unreliable.
MLR and SVR models along with greedy-based feature selection were chosen due to their
superior performance when compared with other combinations of models and feature
selection methods. In case of exercise data, greedy-based MLR performed slightly better
than greedy-based SVR. For the recovery data, MLR performed better, unlike in the case
of data with deviant points where SVR performed better than MLR. There was a 5.1%
increment in the R-value and a significant decrease of 12.2% in RMSE of greedy-based MLR
due to the removal of deviant points. Whereas, for the recovery data, the increment in
R-value was found to be 7.0% and RMSE was decreased by 13.6%. The overall improvement
of R and RMSE was 13.0% and 19.3%, respectively, when compared with the initial results
of the same model. The removal of deviant points, both in training and testing, effectively
improved the model performance in Case I.

7.2. Case II

The approach used in Section 7.1 cannot be used in VO2max estimation for a down-
stream application since it requires ground-truth VO2max to identify deviant points. There-
fore, another case was included in the post-modeling analysis where the deviant points
were removed only from the training and the models were exposed to outliers during
evaluation which mimicked the real-world scenario. The similar steps were followed as
described in Subsection refcase1. In this case, the k-NN-based method was used to remove
deviant points only from the training set. On the other hand, the ratio of reliable-to-deviant
points in the testing set was maintained similar to their ratio that existed in entire dataset.
MLR and SVR models along with greedy-based feature selection were chosen in this case
due to their superior performance. For the recovery data, SVR performed slightly better
than MLR as similar in the case of data with deviant points. There was a 4.1% decrement
in the R-value and increase of 4.8% in RMSE of greedy-based SVR due to the removal of
deviant points only from the training set. Whereas, for the exercise data, greedy-based SVR
performed slightly better than greedy-based MLR. The decrement in R-value was observed
to be 1.4% and the increase in RMSE was observed to be 4.2%. The removal of deviant
points, only while training the model, reduced the model performance as expected since
the model parameters were not tuned to generalize for the divergent behavior of deviant
points. The Case I and Case II results noted for exercise and recovery are as shown in
Tables 8 and 9, respectively.
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Table 8. Models performance metrics for Case I and II during exercise.

Model
Description

Performance Metrics for Exercise

Case I Case II

R RMSE R RMSE

Greedy-SVR 0.78 4.42 0.73 5.20

Greedy-MLR 0.78 4.38 0.72 5.26

Table 9. Models performance metrics for Case I and II during recovery.

Model
Description

Performance Metrics for Recovery

Case I Case II

R RMSE R RMSE

Greedy-SVR 0.75 4.62 0.70 5.40

Greedy-MLR 0.76 5.26 0.70 5.42

8. Discussion

In this study, the feasibility of using HRV to estimate VO2max during exercise and
recovery phase was examined with the dataset comprised of 991 measurements. By using
different HRV features extracted from exercise and recovery segments separately, as men-
tioned in Section 3.3, three different Machine Learning-based regression models—MLR,
RF and SVR—were employed in order to estimate VO2max. A total of 101 features were
extracted from the exercise phase and 30 features were extracted from HR collected during
recovery. In order to avoid overfitting of the model and improve the performance of the
model, pruning of features was performed using correlation-based, mutual information-
based and greedy-based feature selection methods. Among all the feature selection and
model combinations used in the study, greedy-based MLR yielded better results (R = 0.74
& RMSE = 4.99) with respect to exercise features and greedy-based SVR showed best re-
sults (R = 0.73 & RMSE = 5.15) with respect to recovery features. Further, to increase the
robustness of the model, k-NN-based clustering was used to remove the outliers. After
the removal of outliers, there was significant decrease in RMSE overall for both exercise
and recovery segments. The addition of pruned HRV features extracted from both ex-
ercise as mentioned in Appendix A and recovery segments as mentioned in Tables 1–3,
increased the model performance and hence, this study conforms the feasibility of using
HRV, extracted from both exercise and recovery phase, as a predictor variable to assess
VO2max. Additionally, a greater number of HRV features was extracted from exercise HR
when compared with recovery HR since the duration of recovery phase was only 3 min.
Despite the limited number of features, the evaluation metric of model using recovery
HRV differed from exercise HRV by only 0.02. HR was obtained from athletes performing
GET protocol on a treadmill and hence, the data recorded were more susceptible to motion
artifacts. As elaborated in Section 3.2, a total of 72 data points from the exercise segment
and 17 data points from recovery, which had irrelevant HR measurements, were removed
to avoid bias in HRV interpretation. With respect to the higher incidence of extracting HRV
information from reliable HR segments and similarity between the evaluation metrics, HRV
from recovery phase could be a alternate potential candidate in the assessment of VO2max.

Studies have established the fact the recovery rate is directly proportional to the
cardiorespiratory fitness of the athletes (i.e.,) if the recovery rate of the individual is faster
or quicker, the vagal activity is stimulated post exercise, as measured by HRV, the individual
would be more fitter as measured by VO2max. In our study, two of the HRV features that
were consistently ranked superior with high relevance with VO2max during the recovery
were DFA slope estimate α1 and PNNI 50. Moreover, a study [19] that examined HRV
features, illustrated that PNNI 50 derived from exercise HR showed a significant impact
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on the estimation of VO2max. Thus, it is clear that more HRV-related experimental studies
in both exercise and recovery phase should be conducted to validate the physiological
relevance between HRV and VO2max.

Therefore, this study proposes the utility of HRV in the assessment of VO2max of
athletes of large sample size with wide age range distribution. Our study is one of a kind
as it examines HRV, extracted from exercise and recovery phase, to estimate VO2max on a
larger population of athletes. Additionally, this study methodology supports the use of
wearable HR monitors and hence, they can be used in place of the conventional obtrusive
setup for VO2max assessment. Furthermore, due to the unobtrusive nature of wearable
HR monitors, the VO2max assessment of athletes can be conveniently performed without
affecting their functional capability at maximal intensities, unlike the conventional setup.

9. Conclusions

In this work, we propose the utility of HRV extracted from exercise and recovery HR
segments in assessing the VO2max of a large number of athletes. We employed regression
models to estimate VO2max from the HRV feature set. We incorporated feature selection
methods with the regression models in order to avoid the overfitting of the model. Eventu-
ally, pruned HRV features which had high relevance with the model estimate, presented a
significant impact in the estimation of VO2max by showing improved model performance.
Furthermore, we applied k-NN on the data points of exercise and recovery, which resulted
in an increase in model’s accuracy and reduction in RMSE, thereby optimizing the model
performance. With respect to the reliability of HR measurements and optimized model
performance with lesser pruned features, the use of HRV from recovery phase could be
a potential candidate in assessing the VO2max of individuals. Therefore, this work con-
tributes to the utility of wearable HR monitors for the athletes by validating the use of HRV
information, extracted from exercise and recovery phase, for the assessment of VO2max.

In our future work, we intend to explore the potential of each HRV derived from
recovery phase, by examining the recovery data of sufficient window length as the scope of
the current study was to examine the HRV derived from recovery window of 3 min. Further,
we would like to explore the importance of gaining a greater amount of information from
HRV using feature stacking for improving the model performance. Eventually, we intend
to demonstrate the utility of HRV-based VO2max assessment of athletes using wearable
HR monitors.
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Abbreviations

The following abbreviations are used in this manuscript:

HR Heart Rate
HRV Heart Rate Variability
VO2max Maximal oxygen uptake
CPET Cardio Pulmonary Exercise Test
CRF Cardio Respiratory Fitness
ML Machine Learning
MLR Multiple Linear Regression
RF Random Forest
SVR Support vector Regression

Appendix A

Table A1. Correlation–based Pruned Features for exercise data.

Category Pruned Features Description

METADATA

Age

Physical AttributesBMI

Gender

Protocol Type Information on whether protocol is
“step” or “incremental”

HR-HRV
FEATURES

Sum TRIMP Cumulative sum of TRaining IMPulse values
calculated using Bannister Equation

Min HR Lowest Heart Rate value
where Min HR = minimum of total HR

Std. HR Standard Deviation of HR values

NNI 20 Number of successive NNI intervals that
differ by more than 20 ms

NNI 50 Number of successive NNI intervals that
differ by more than 50 ms

Range NNI Difference between Maximum NNI and
Minimum NNI

VLF Absolute power of the
very-low-frequency band (0.0033–0.04 Hz)

LF Absolute power of the low-frequency
band (0.04–0.15 Hz)

HF Absolute power of the high-frequency band (0.15–0.4 Hz)

LF_nu

LF/(LF + HF)
LF = Absolute power of low
frequency (0.04–0.15 Hz)
where HF = Absolute power of high
frequency (0.15–0.4 Hz)

DFA at maximum HR Detrended fluctuation analysis, which describes
long-term fluctuations at maximum HR

Sample Entropy Measure of regularity and complexity of a
NN series

Triangular ind Integral of the density of the RR interval histogram
divided by its height

Mean HR Slope
Slope of Mean HR computed for
every 2 min window
where Mean HR = mean of total HR
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Table A1. Cont.

Category Pruned Features Description

NNI 20 Slope

Slope of NNI 20 computed for every
2 min window
where NNI 20 = Number of successive
NNI intervals that differ by more than 20 ms

PNNI 50 Slope

Slope of PNNI 50 computed for every
2 min window
where PNNI 50 = Percentage of number of successive
NNI intervals that differ by more than 50 ms

LF Slope Slope of LF power values computed for
every 2 min window

HF Slope Slope of HF power values computed for
every 2 min window

DFA Slope Slope of DFA values computed for
every 2 min window

SD2 SD1 Slope

Slope of SD2 SD1 computed for every 2 min window
SD1—standard deviation of projection of the Poincaré plot on the line
perpendicular to the line of identity
SD2—standard deviation of projection of the Poincaré plot on the line
on the line of identity

Triangular ind Slope Slope of Triangular indexes for every
2 min window

CVNNI Slope
Slope of Co-Variance of NNI intervals
where CVNNI = Ratio of standard deviation
of NNI and mean NNI

SlopeSp25 Slope of HR and Time segments corresponding
to 0–25% maximum speed

SlopeSp50 Slope of HR and Time segments corresponding
to 25–50% maximum speed

SlopeSp75 Slope of HR and Time segments corresponding
to 50–75% maximum speed

SlopeSp100 Slope of HR and Time segments corresponding
to 75–100% maximum speed

TIME
BASED

FEATURES

Exercise Duration Effective Time spent on Treadmill in seconds

RT50 Correlation between speed and HR segments
corresponding to 25–50% total time

RT75 Correlation between speed and HR segments
corresponding to 60–75% total time

RSp75 Correlation between speed and HR segments
corresponding to 0–75 % maximum speed

TimeHR25 Time at which their HR was 25% max HR

TimeHR50 Time at which their HR was 50% max HR

TimeHR75 Time at which their HR was 75% max HR

DurationHR60 Total time spent in zone 50–60% of max HR

DurationHR70 Total time spent in zone 60–70% of max HR

DurationHR80 Total time spent in zone 70–80% of max HR

DurationHR90 Total time spent in zone 80–90% of max HR

DurationHR100 Total time spent in zone 90–100% of max HR
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Table A2. Mutual Information–based Pruned Features for exercise data.

Category Pruned Features Description

METADATA

Age

BMI

Gender

Physical Attributes

Protocol Type Information on whether protocol is
“step” or “incremental”

Sum TRIMP Cumulative sum of TRaining IMPulse values
calculated using Bannister Equation

Min HR Lowest Heart Rate value

25% HR max 25% of maximum HR value

PNNI 20 Percentage of number of successive
NNI intervals that differ by more than 20 ms

PNNI 50 Percentage of number of successive
NNI intervals that differ by more than 50 ms

VLF Absolute power of the very low
frequency band (0.0033–0.04 Hz)

LF Absolute power of the low frequency
band (0.04–0.15 Hz)

HF Absolute power of the
high frequency band (0.15–0.4 Hz)

LF/HF Ratio of LF–HF power

DFA at maximum HR Detrended fluctuation analysis, which describes
long-term fluctuations at maximum HR

Triangular ind Integral of the density of the RR interval histogram
divided by its height

CVSD Coefficient of variation of successive differences
equal to the rmssd divided by Mean NNI

Std. HR Slope Slope of standard deviation of HR computed for
every 2 min window

Mean HR Slope Slope of Mean HR computed for
every 2 min window

NNI 20 Slope Slope of NNI 20 computed for
every 2 min window

SD2 SD1 Slope

Slope of SD2 SD1 computed for every 2 min window
SD1—standard deviation of projection of the Poincaré plot on the line
perpendicular to the line of identity
SD2—standard deviation of projection of the Poincaré plot on the line
on the line of identity

SDSD Slope
Slope of standard deviation of successive
difference of NNI computed for every
2 min window

PNNI 50 Slope Slope of PNNI 50 computed for
every 2 min window

HF Slope Slope of HF power values computed for
every 2 min window
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Table A2. Cont.

Category Pruned Features Description

HR-HRV
FEATURES

Total Power Slope
Slope of Total power computed for
every 2 min window,
Total power = LF + HF

DFA Slope Slope of DFA values computed for
every 2 min window

Triangular ind Slope Slope of Triangular index values computed
for every 2 min window

Sample Entropy Slope Slope of sample entropy values computed
for every 2 min window

SlopeSp25 Slope of HR values between 0–25% of
maximum speed reached

SlopeSp50 Slope of HR values between 25–50% of
maximum speed reached

SlopeSp75 Slope of HR values between 50–75% of
maximum speed reached

SlopeSp100 Slope of HR values between 75–100% of
maximum speed reached

RT75 Correlation between speed and HR segments
corresponding to 50–75 % total time

RT100 Correlation between speed and HR segments
corresponding to 75–100% total time

R Total Correlation of speed and HR for total duration

Max. Speed Maximum speed reached

TimeHR25 Time at which their HR was 25% max HR

TimeHR75 Time at which their HR was 75% max HR

DurationHR70 Total time spent in zone 60–70% of max HR

DurationHR80 Total time spent in zone 70–80% of max HR

DurationHR90 Total time spent in zone 80–90% of max HR

TIME
BASED

FEATURES

DurationHR100 Total time spent in zone 90–100% of max HR

Table A3. Best Features selected based on Greedy-based Feature selection on exercise segments

Models Greedy Feature Selection

Multiple
Linear

Regression

Age, Gender, Height, Weight, BMI, Protocol Type,
Sum TRIMP, Min HR, PNNI 20, PNNI 50, SD2,
Mean NNI Slope, Std. HR Slope, Range NNI Slope,
NNI 50 Slope, PNNI 50 Slope, LF Slope, SD1 Slope,
SD2 Slope, SlopeSp25, SlopeSp100, RSp25, RSp50,
RSp100, TimeSp50, TimeSp75, TimeSp100, RT50,
RT75, DurationHR60, DurationHR70,
DurationHR100, Ex. Duration

Random
Forest

Age, Gender, Height, BMI, Protocol Type, LF/HF,
HF_nu, DFA at maximum HR, PNNI 20 Slope,
LF Slope, Triangular ind Slope, TimeSp25, RT75,
DurationHR90, Max. Speed

Support
Vector

Machine

Age, Gender, Weight, BMI, Protocol Type, Sum TRIMP,
Mean TRIMP, NNI 20, VLF, Min HR Slope, Std. HR Slope,
Range NNI Slope, NNI 20 Slope, PNNI 20 Slope, LF Slope,
SD2 Slope, Modified CSI Slope, RSpAvg, RSp75, TimeSp50,
TimeSp75, RT75, TimeHR25, TimeHR50, DurationHR70,
Max. Speed, Ex. Duration
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Table A4. Tabulation of observed RMSE values across 10 cross-validation folds.

CVs Testing Set RMSE

CV1 12, 13, 26, . . . . . . .. 5.351

CV2 5, 21, 37, . . . . . . .. 5.039

CV3 8, 19, 33, . . . . . . .. 5.187

CV4 6, 24, 48, . . . . . . .. 5.046

CV5 7, 11, 15, . . . . . . .. 4.967

CV6 10, 43, 74, . . . . . . .. 5.737

CV7 2, 17, 18, . . . . . . .. 5.541

CV8 3, 4, 16, . . . . . . .. 5.622

CV9 14, 20, 28, . . . . . . .. 5.318

CV10 7, 9, 15, . . . . . . .. 5.218

The mean and standard deviation of RMSE computed across 10 cross-validation folds
were 5.303 and 0.262, respectively. To help with the reproducibility of the results, the data
were split into training and testing using the sklearn.model_selection.Kfold module with
random_state set to a seed value of 5.

This K-Folds cross-validator module provided indices to split the data into train/test
sets and split the dataset into k consecutive folds. Each fold was then used once as validation
while the k–1 remaining folds were used to train the model. Using the fixed seed for the
random state ensured that indices obtained using random shuffles would be replicable.
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